90 236 TRANSFORMATIONS OF CONCURRENT ALOGORITHMS FOR MIGNLY 11
rmun ?STEIIS: l 0 (U) IDIM W!V HT BLOOMINGTON
UNCLASSIFIED ‘05!-11—.7-1?37 RFOSR “-.14 F/G 1276 L8




P R R NN P T X R e AT A A R R R T U L R R R N T T T T R Y T L T Y Y S Y Y

.t ..b

o —a—ay

- T ae .

i L0 Bl p
Ty '
% | L ’

2 s s §
! “ . ! '

1

N R | L ]

D
Pad
' +
; U .
“ 1}
oy '
" L}
. ]
I.. ‘
)

- - - - - - L L 4 - \J L 4 L2
¥ S St '- -' O 2% an “an VIE 3 o
T e

. s Y Q

‘ ‘... "’. ."l. ‘.. ..::.‘ '.'05:::.'1':“0' .‘J.‘o'\' .‘ ::. aﬂ“l:.'\;s.'".o“..“-"'-l e :“..:::::::..o ‘.“\




+ NN U UV U OO TR L A dab 510 €0 00 0000 0n it 0d 0 0% o UG R TN IO K YOO KT R R AN WY v W

W'
'
h)
- URLLADWL ¥ L 80
K SRCURITY CLASBISICATION OF g P4 08
't i
" REPORT DOCUMENTATION PAGE !
1 .
¢::’ ‘s REPOAT SECURITY _LASSISICATION ta. AESTRICTIVE MAAKINGS ]
& UNCLASSIFIED !
W ™ SEFBITY Al AGRISIFATIAM IV LNAGTY 3 OISTRIBUTION/AVAILABILITY OF REPOAT i
Approved for public release; distribution i
Y uLt unlimited. :
:\‘ 4 ‘
', i
:.:3: AD—A 1 90 236 MRS, 3. MONITORING ORGANIZATION REPOAT NUMBEAR(S) '
R AFOSR-TR- 87-1737 !
N} i
o Se NAME TE SERMEIMMING SAGANIZAT ON Bo OFe.CESvmEC . Ta NAME DOF MONITORING ORGANIZATION .
. i 1 CFPUHO :
" Indiana University Foundatiob Air Force 0Office of Scientific Researcn
BO
N Sc. ADORYESS (City. Sww me ZIP Cota) Ta. ADONESS (City. Stam end ZIP Code! ‘ﬂcﬂq <
' . Directorate of Mathematical formation
?," . Sciences, Bolling AFB DC 20332-6448
S Bloomington, Indiana
B NAME OF PUNDING/BPONSORING OFFICE SYMBOL 8. PROCUREMENT INETRUMENT 1DENTIFICATION NUMSER
) ORBANIZATION . 7 qpotiondis)
iy - AFOSR-86-0147
J‘: &a. ADORESS (Cify. Siass and 21P Code) ] 10. SOUNCS OF FUNDING NOS.
L ~ e
. PROGARAM PROUECT TaBK WORK UNIY
:":’ /%\C\ &\C SLEMENY NO. -y ~NO. "o
Bolling -A¥B DC 20332-6448 61102F 2304 A3
,;." ”". (Incinde Socurity Chumifiestion) .
X j Transformation
e 12. FRRBONAL AUTHOAS) Summary Report.
¥ "-: nnis _Gannoo.  om—
s 13¢. TYPS OF REPOART 130 TIME COVERLD 14. DATE OF REPOAT (Yr_ Me.. Dey) 16 PAGE COUNT
' .
N . FROMY oop gy TO - Mg—? 5 .
. 6. SUPPLEMENTARY NOTATION
P
-(:‘j 17, COSAT! CODES 18 SUBJECT TEAMS (Continus on weerms if accemary ond identify by bioch number)
K py #1810 anour SUS. GR.
+ R
:!: 19. ABSTRACT (Continue on mverw ([ Acesssry end «dandly ¥y bock aumber)
g
:' : This project has investigated transformations of algorithms for highly concurrent
“\ . systems. Two technical reports resulting from -this research which were completed during
the first years effort were entitled "Applying AL techniques to program optimization for
o parallel computers' and "Strategies for cache and local memory management by alegrogram
:' transformations."
ol , i
" ELECTER
) + ..—
o~ JAN 06 1988 [
N * Cro
s H
) ;: 20 OISTRISUTION/AVAILABILITY OF ASSTRACT 21, ABSTRACT SECURITY CLASSIFICATION
D)
_':'A uncLassirigo/unLimnmTed K same as ner. O oricusens O UNCLASSIFIED
: 230 RAME OF AESPONSIOLE INDIVIDUAL 120 YELEPHONE NUMSER 23¢. OFPICS SYMBOL
o Ineinde Ame Code)
o::‘ Maj. John Thomas (202) 767-54,¢ i
o DO FORM 1473, 83 APR E0ITION OF 1 JAN T3 18 OSSOLETE. UNCLASSIFIED
::o: . BECURITY CLARIFICATION OF Tna Pact
X 87 ik Lo o~

AN . - . . . ;
: S A Ay AT AT () 3] e
N T S S AR N R PN R T ST IO R I o B Wt

&



. . . - . . N . . - . (P T 7 \J A0 e Y W
o2 s g? Tg%. 1g0 0a% Satuiat ¥ 28 450 010 et bat bt byt " Bat )0 gat ) R W T W 8 ab " R " %) 8 el -

2
<
o
L} !5
E "
¢
AFOSR-TR- 87-1737 )
G
Transformations of Concurrent Algorithms for Highly P
Parallel Systems: A One Year Project Summary Report. bt
1
Dennis Gannon !':':
Dept. of Computer Science Indiana, University Bloomington, Indiana "
ABSTRACT '-7
|.'
This report describes the activities carried out under AFOSR \.,-
GRANT 86-0147 covering the period from the starting date to Oct. x
1. 1987. )
. 'I.\
R A “
1. INTRODUCTION )
. }It has become a certainty that Multiple Instruction Stream, Multiple Data &'u
Stream (MIMD) parallel architectures are going to play a major role in all aspects )
of high speed computer design for the foreseeable future. What is not clear is N
whether we will be able to devise a means to design algorithms and software for o
these machines that transcends our current ad-hoc, nonportable techniques. In '
this research project we have focused on the portability issue from the perspec- N
tive of parallel algorithm design and how it effects the internal organization of )
advanced compilers. The eventual goal of the project is to produce an "expert il
system” that can help users transform large, complex applications from one b
highly parallel machine to another. Our basic strategy has been to follow the fol- o
_lowing plan: N k
< 1. Build an experimental research laboratory for parallel computation: . :
Parallel computation has both a theoretical foundation and an experimental R
component. Because we are interested in both the process of porting programs :ﬁ.
and the behavior of the algorithms on different target machines, it was essential ~{3
to build a laboratory for parallel computation. With help from the AFOSR and 1‘_?
ONR University Instrumentation Program (and nearly $400,000 from the univer- ."
sity) we established a parallel computation research lab. The lab houses two 3
machines of great interest to us. One is a 16 Processor BBN Butterfly parallel ;}:
shared memory computer. The other is an Alliant FX/8 4 CE vector multipro-
cessor. These two systems provides an outstanding basis for research on the por- by
tability problem because they have radically different architectures but are both ;5 Por f
still classified as shared memory parallel computers. GRA&T :
~ 2" Design an experimental program of research that would shed light on the *B o
"~ problems involved wnth restructunng parallel programs for different wiced O
machxna - v c‘lli—or}T__{:
Because the objective is to build tools that "understand” the problems of F
parallelizing programs for given machines, we needed experience in seeing how . & 1:( /h——’ .
algorithms work and how they differ in the organization of the parallelism when i s,
lity (‘Uu(S ) 1y
optimized for these two machines. In section 2 of this report we will summanze a1l androm MR
/or \
- DENEA Spectial \
:P" \ J o8
._:L
LL S :{
NI N A N VAL RGN R AT S A TN, S N G M AR "'\ -"-.‘\"'~'\ Wa!




IO T WL W

O N N

EX TV

. N YR - ‘o~ oS e s
AT PR R TR AN T A S A Yy Ty, ¥ » WLV UYWL (W \ A g avgaia A S

the algorithms that we worked with and briefly describe some of the resulits.

3 Attempt to provide a mathematical characterization of the properties of the
machines and how algorithms must be restructured to run on them. ,

So far we have focused on the properties of memory hierarchy such as cache
memory and processor local memory. We have developed a mathematical model
of how cache behavior can be related to program data dependencna This work
was done in collaboration with William Jalby of INRIA in Paris and Kyle Gal-
livan of CSRD in Urbana. The results were presented in an invited paper in the
first international conference on supercomputing in - Athens Greece in July of
1987. A copy of this paper is included as am dppendix to this report. The next
step is to design a mathematical model of task granularity and synchronization.

_We are still working on this problem and should be able to report some results by

the end of the contract period.

4 Attempt to design a model of machine architecture that can be embedded
into the inference engine or knowledge base of an expert system for program
restructuring.

Our first attempt at this is nearly complete. Graduate students Ko-Yang
Wang has designed a prototype inference system for restructuring programs. The
system works with the user who selects the part of the program on which to
focus the systems expertise. The system then consults the knowledge base that
describes the properties of the target machine and derives a suggested sequence of
program transformations that best optimizes the section of code for execution on
the target. A preliminary report on the ideas in the system has been written and
will be published in a volume edited by Doug DeGroot and Kai Hwang on super-
computing and A.L. machines. A copy of this report is attached as an appendix
to this report.

2. ALGORITHM EXPERIMENTS

Our experimental philosophy is to lean the what an expert system for pro-
gram restructuring should do by becoming experts at porting and restructuring
codes for different parallel machines. We have spent 10 years at this with a
variety of prototype machines and now one year with our own laboratory facili-
ties. A large number of experiments have been carried out. Because this work
has not been published anywhere we thought it would be a good idea to give a
bricf summary of this activity here.

Our target machines include the two systems that we operate in our lab.
One is a 16 processor butterfly shared memory computer and the other is an Alli-
ant FX/8 with 4 vector processors. There are four experiments described here.
Two are complete and two are still in progress. All of this work was supported,
at least in part, by this grant.

Ray Traced Computer Graphics.

This experiment was carried out to test the problems of extracting the
parallelism in an application that is very computationally intensive but also has
data structures that are more closely associated with recursive algorithms than
the traditional numerical codes. The algorithm works by following optics in
reverse. Light rays are "traced” from the eye of the viewer back into the scene

- - - rymy kst t L vy v
"i.' NSNS L'y RGN -U‘v o' -l.' ", l‘ " ™ Fraarny ""‘

<
N7

v
o o v

«
a

-~

-

"'-"&5'- A SRS

e

i

« v .

Ay

. »
-

5.

¥ :
',\"5{\5 “s'f.

2

XML e Py
. .
4N

P
"'.'sl' o

w v
[
5

.I‘
4

. Pk o8 o]
NN

(!

2y " A" A AP
I'.f':':’

P ]
L o

.1 OO

b



. b wd . . . . - an’ . » & 2" g Ye
R PRV R LN W VW AN AT AT \J 228 02t ot S THE W V. i a” o8 " b Q0 A Nt g 0] 4 e 4 LS, P

? « }
-3-
; where they reflect off and refract through objects. Because each ray is indepen- _’.
dent of all of the others the task is completely parallel. One processor can be )
’: assigned to each light ray and massive parallelism can be obtained. This was &
’ done by a team of students for the butterfly and reasonably good performance -
| resulted. .
. The primary problem was that the object data base was stored in globally ﬂ‘,
shared memory and each processor needed constant access to this data base. ',:'
. Because a global memory module can only be reference at constant rate and only
: one processor may have access to the data in that memory module at any given
. instant of time, there is an upper bound on the number of processors that may PO
i share an object that they frequently reference without causing some conflicts and ~
delays. By distributing the shared data through the set of memory memory o
" modules in a uniform manner, we were able to reduce the contention and increase ::'
k performance. »
, An important lesson was learned here. For large shared memory parallel Y
! systems the distribution of data can, and must, be a major task of any compiler )
/ that tries to optimize performance. a;
d The Alliant FX/8 presented a different set of problems. First, the processor i
' on the Alliant machine contains complex and powerful vector hardware. The .
problem is that it is not easy to exploit on this algorithm. We did, however, dis- by
cover that there are a number of ways that it can be exploited for simple com- '
putations that must be carried out for each ray. For example, each ray must be -~
K intersected with each object in the scene (for a simple ray tracing algorithm). ~
This process may be easily vectorized and good performace results. For more N
complex algorithms this task is not needed. We are still studing the problem of =Y
/ how to provide effective exploitation of vector hardware on the problem. -
! Numerical FFT algorithms. :_',".
Numerical FFTs are just one of many numerical computations we have ¥
worked on. In all cases we have found one striking difference between the
effective use of the parallel hardware one our two systems. In particular, we A
! have discovered that on the Alliant system the memory hierarchy is such that ;
i processors "like” to share common data (because it may be kept in the shared o
. cache). Furthermore, because the cost of bringing data into cache from shared Y
memory is relatively high, it is best to try to make sure that all required refer- _
q ences to a data item by all processors occurs while the data is in cache. While A
j this may seem obvious, it has strong implications about the way algorithms are -
. organized. In fact, Jalby, Meyer, and Gallivan have shown that a block struc- -
. tured algorithms achieve the best performance on the machine. Based on their -
results we (Jalby and Gannon) designed an FFT library for the Alliant that is ’
very fast and we are now incorporating the block structuring transformations 5
. into the programming tools system. I
X On the Butterfly there is no shared cache and no strong need to do blocking. E:
However, there is a related problem and solution. The memory on the '
butterfly is local. This means that when data is in a local memory the access is v
much faster than if it is far away. We discovered that the same analysis that 53
. was needed to keep data in cache for the Alliant could be used to decide which ‘ ff.
[ ‘:
: ¥
: N
- N

\\\-,\

-"n\\p\ e I )
¥

ff'f}.rl-r

DGO OO " S e il 0o e > v

NN
P e Y RN




EEN AN AR O TA Sl

data must be kept in the local memory of each Butterfly processor. This was a
rather striking discovery which has led to uniform model of cache management
described in the attached paper.

Artificial Intelligence, Production Systems and OPS 6.

Two other algorithm application areas that we hare looking at are related to
Artificial Intelligence and Expert Systems. One is Neural Network Modeling
which will not be described here and the other is parallelism experiments with
the production system language OPS5. Production systems are used in the
inference engines of expert systems. One of the most common is OPS5 and it is
based on a tree resolution method called the Rete Match algorithm. We have
now completed one implementation based on using butterfly Lisp on the BBN
system. This proved to be far too slow partially due to compiler problems, but
mostly due to the fact that the obvious ways to try to use concurrency in the
match algorithm do not work. (This fact has been reported by several people in
the literature).

We have started a new effort that will focus more energy on the lower levels
of the computation that should prove to be effective for both the Alliant system
and the Butterfly. We will report on the final results of this study in our final
report.

Genetic Algorithms.

This work is being done by graduate student J. Y. Suh under the direction
of faculty member Dirk Van Gucht. Genetic algorithms are an optimization
technique that uses simple ideas from evolution theory to solve optimization
problems. In this exercise we started with a good serial C program for doing a
genetic optimization of the traveling salesman problem. We then did a mechani-
cal set of transformations to come up with a reasonably good Butterfly version.
A series of test were made which showed moderate performance improvements
that resulted in speed-us of about 12 on a 16 processor machine.

By looking at where the restructured algorithm failed to perform with per-
fect speed-up he noticed that the serial algorithm was bound by a centralized
control mechanism that inhibited parallelism. By focusing on this problem was
able to design an completely new "distributed” genetic code. The new code has
been run on Butterfly systems with as many as 128 processors with speed-ups of
over 120.

3. FUTURE WORK

We feel that our attempts to help automate the process of restructuring
serial program are going very well and that these tools that we are building are
essential if we have any hope of solving the portablility problem. However, one
clear message that has emerged from our experimental work. It is not possible
to derive the OPTIMAL algorithms for any given computation by a purely
mechanical set of transformations to the source code of a good serial algorithm.
Algorithm RETHINKING is needed to do that. The important question to ask
is what sort of tools are needed to help programmers with this process. It is our
conclusion that the direction that we need to take this work is to find way to

B S e S R R

el i



help programmers with the process of redesigning algorithms.

Again, it is our experimental work that has led us to a way to solve this
problem. The process that is usually followed by programmers in finding a new
algorithm is to try to discover exactly why the old one failed. He does this by
testing the program and isolating the serial bottlenecks in the computation and
understanding why they take the form that they do. It is this process where
programmer need the most help.

Our next set of tools will be built to help users identify serial bottleneck in
algorithms. We will do this by building a a performance estimation ”took kit”
based on our research on estimating speed-up and memory hierarchy (cache and
local memory) modeling theory. A full report on some initial experiments with
this project will appear in the final report for this project.

() A 1S9 P P AN TS TS 5% 3% ] LTS IR LN / I M N IO
"W “‘\"!l"!"..‘..‘-\"“l'..ﬂ.‘l. » (AL NI '*' - ‘.l.“h". AL RN A . .' ALK 1A X A B 'y ' Aak %,

“»

LY {ﬁl‘sl.;ﬁl’sf \l "l -

- >

[l

&;-

‘ -, -r\.\f..-’\,f\,f



o

.

AL LS

+

4 gan

NATAT AT

v

3

¥ Bl

[ Sl g G W

U i Y

EPPON R YOk A

-

("

oy

L

N

4

-

5

'

LY
,;f.'f
n.‘

-
o

o

o
~ )
J“\"

]

,ﬁ'f

*,

W



